NAVAL POSTGRADUATE SCHOOL Monterey, California

EC 3210 MIDTERM EXAM I 10/92 Po

- This exam is open book and notes.
- There are three problems; each is equally weighted.
- Partial credit will be given; be sure to do some work on each problem.
- \bullet Be sure to include units in your answers.
- Please circle or underline your answers.
- $\bullet\,$ Do NOT do any work on this sheet.
- \bullet Show ALL work.
- Enter your name in the space provided.

1	
2	
3	
Total	

Name [.]		

1. Consider two unit–amplitude plane waves propagating in the y-direction with \vec{k} -vectors as shown (the angles are enlarged for clarity). The phase of wave #1 is 30° and the phase of wave #2 is 145°. The frequency of the waves is 6×10^{14} . Write complete expressions for $E_1(x, y, z, t)$ and $E_2(x, y, z, t)$.

2. Consider the Mach–Zender interferometer shown below. It is used with an argon laser ($\lambda=488$ nm). With air in both paths, the fringe spacing is found to be 300 μ m.

If a piece of transparent plastic (n = 1.8) that is 3 cm long is placed in path #1, calculate the displacement of the fringes (in units of meters) at the observation screen.

3. Design a polarizing prism made out of ADP and optical cement (n=1.4) to produce horizontally polarized light. The input face of the prism should be 3 cm x 3 cm.

Provide all significant dimensions, as well as the orientation of the fast and slow axis of the crystal (relative to horizontal).